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A time-marching computational fluid dynamics method is developed and applied
to the computation of multiphase mixture flows. The model accounts for finite acous-
tic speeds in the constituent phases, which typically lead to transonic/supersonic flow
and associated compressibility phenomena such as shock formation in the mixture
region. Preconditioning or artificial compressibility methods are devised using per-
turbation theory to insure that the method retains efficiency and accuracy in both
the incompressible and compressible flow regimes. The resulting algorithm is in-
corporated within an existing multiphase code, and several representative appli-
cations are used to demonstrate the capabilities of the method. In particular, our
results suggest that the present compressible formulation provides an improved de-
scription of cavitation dynamics compared with previous incompressible computa-
tions. c© 2002 Elsevier Science (USA)

Key Words: preconditioning, artificial compressibility methods; multiphase, ho-
mogeneous mixture models; compressibility effects.

1. INTRODUCTION

Multiphase flows are encountered in a wide range of applications involving heat ex-
change, cavitation, sprays, porous media, etc. The computation of multiphase flows has
received growing research attention in recent years, due in part to the evolving maturity
of single-phase computational fluid dynamics (CFD) algorithms. There remain, however,
several physical and modeling challenges. A primary issue is the strong coupling of acous-
tic phenomena [1–5] due to the fact that the speed of sound in two-phase mixtures can be
extremely low compared to the sound speeds in the individual component phases. Thus,
multiphase flows are frequently characterized by local regions, wherein the flow may be
transonic or even supersonic with the presence of shocks, although the bulk of the flow
may remain essentially incompressible. This situation presents a unique challenge to the
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design of CFD algorithms. The development of appropriate numerical schemes for such
multiphase problems is the subject of the present paper.

There are many levels of modeling that may be used in multiphase computations [6]. In
general, one may distinguish between methods that employ an Eulerian framework for all
phases and those that employ Eulerian for a carrier phase and Lagrangian for disperse phases.
In the liquid–vapor, Eulerian–Eulerian framework, the simplest approach is to employ a
single continuity equation for both phases, with the fluid density being described as a
continuous function varying between the vapor and liquid phases [7–9]. At a more detailed
level of modeling, separate continuity equations for the liquid and vapor phases are employed
along with appropriate mass transfer terms to represent the phase-change phenomena [10–
14]. The gas–liquid interface is, however, assumed to be in dynamic and thermal equilibrium
and, consequently, mixture momentum and energy equations are used. This model is usually
referred to as the homogeneous mixture model [6] and is the level of modeling considered
in this paper. The model is appropriate for developed, attached cavitation in hydrodynamics
applications, the area of primary interest to us, due to the relatively large cavity sizes
and negligible surface tension effects in these flows. Finally, we note that full multifluid
modeling, involving separate momentum and energy equations for each of the phases, has
also been used for certain classes of multiphase flow [6] but is not addressed here.

The crucial requirement of multiphase algorithms is the ability to accurately and effi-
ciently span both incompressible and compressible flow regimes. For single-phase appli-
cations, time-marching techniques have long been established as the methods of choice for
high-speed compressible flows, while artificial compressibility or, more generally, precon-
ditioning techniques have enabled the extension of these methods to the incompressible
and low-speed compressible regimes [15–18]. Preconditioning methods introduce appro-
priate pseudo-time-derivatives in order to maintain proper conditioning of the controlling
acoustic and particle convection timescales. Indeed, it is now widely recognized that the
careful selection of these derivatives is crucial for ensuring both efficiency and accuracy
over a wide range of Mach numbers, Reynolds numbers, and Strouhal numbers [18]. Here,
we are concerned with the extension of preconditioned time-marching approaches to the
multiphase system.

Several researchers have previously reported algorithms for multiphase mixtures. Merkle
et al. developed a preconditioning formulation, using mass fraction as the dependent variable
[10]. Kunz et al. developed an alternate preconditioning formulation, using volume fraction
as the dependent variable [11]. In these formulations, constant densities were assumed for
each of the liquid and vapor phases, and compressibility effects were not accounted for in
the two-phase mixture region. Ahuja et al. have developed a multiphase preconditioning al-
gorithm, including compressibility effects in the component phases [13]. Likewise, Senocak
and Shyy have developed a pressure-based algorithm accounting for compressibility effects
[14]. Both these latter models are concerned with the so-called isothermal compressible
situation, wherein the densities of the fluids are assumed to be functions of the pressure,
but not the temperature, and therefore the energy equation is not solved. In the present
paper, the isothermal compressible multiphase system is the level of modeling adopted.
The specific focus here is the understanding of the time-marching system characteristics
and the derivation of appropriately scaled preconditioning forms to facilitate numerical
computations.

Perturbation theory is an invaluable analytical tool for probing the behavior of the fluid
dynamics equations under limiting flow conditions [18]. Importantly, it provides a means
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of formally deriving appropriately scaled preconditioning forms for insuring convergence
efficiency, thereby eliminating the guesswork from the process. Moreover, the perturbation
analysis may also be extended to the discrete version of the system to elucidate the impor-
tance of properly scaled equations for insuring accuracy under limiting flow conditions [18].
In this paper, we employ perturbation theory to analyze the multiphase system. We show
that the preconditioning methodology is not unique, and depending upon the precise form
of the governing equations used in the derivation, we obtain related but distinct precondi-
tioning formulations. In fact, these formulations are generalizations of the preconditioning
forms mentioned earlier and include the isothermal compressible system of Ahuja et al.
[13] as well as the isothermal compressible extensions of the Merkle et al. [10] and Kunz
et al. [11] systems. Indeed, our analysis shows that all of these approaches promise similar
convergence properties and properly preserve the accuracy of the discrete formulation.

The paper is organized as follows. We begin with the equations of motion for two-phase
homogeneous mixture flows. The equations are presented both in their volume fraction
and mass fraction forms. We examine the eigenvalues of these systems to assess the con-
ditioning of the system in the compressible and incompressible limits. We then employ
perturbation theory to probe the underlying sources of stiffness and devise preconditioning
forms that maintain well-conditioned behavior in both compressible and incompressible
flow regimes. Our primary interest lies in sheet- and super-cavitating flows encountered
in naval hydrodynamics applications. These flows are typically turbulent and also exhibit
large-scale unsteadiness. Accordingly, the multiphase algorithm derived in this paper is
incorporated into a dual-time framework for time accuracy [16]. In Results, the method is
then applied to various applications of interest, including cavitating flows over axisymmet-
ric ogive configurations for which measurement data are available. Finally, we conclude
with a summary and a brief description of current and future work.

2. EQUATIONS OF MOTION

2.1. Volume Fraction Form

The governing equations for two-phase flow are customarily written in terms of vol-
ume fraction variables. For the purposes of the theoretical derivation, we employ only the
one-dimensional inviscid flow equations, although in practical implementation, the multidi-
mensional Reynolds-averaged equations are used. We also drop the source terms describing
the mass transfer between the phases and again the relevant terms will be introduced in prac-
tical implementation. The individual continuity equations for the vapor and liquid phases
are

∂ρ̃vαv

∂τ
+ ∂ρ̃vαvu

∂x
= 0 (1)

∂ρ̃lαl

∂τ
+ ∂ρ̃lαlu

∂x
= 0, (2)

while the global momentum equation is

∂ρu

∂τ
+ ∂ρu2

∂x
+ ∂p

∂x
= 0. (3)
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In the above equations, the mixture density is defined as

ρ = ρ̃lαl + ρ̃vαv, (4)

while the individual phasic densities, ρ̃v and ρ̃l , are defined as mass of the phase per unit
volume occupied by that phase. Also, we note that αv + αl = 1. The system is then closed
by the phasic equations of state,

ρ̃v = ρ̃v(p) and ρ̃l = ρ̃l(p), (5)

where the individual phasic densities are assumed to be functions of pressure only. In our
previous work [11, 12], these quantities were taken to be constant, representing a mixture
of incompressible phases.

2.2. Mass Fraction Form

The above equations may alternatively be written in terms of mass fraction variables as
well. This form is customarily used for gaseous mixtures but is also equally valid for general
multiphase mixtures.

∂ρYv

∂τ
+ ∂ρYvu

∂x
= 0 (6)

∂ρYl

∂τ
+ ∂ρYlu

∂x
= 0, (7)

with the momentum equation having the same form as Eq. (3).
It is sometimes useful to define the individual phasic densities, ρv = ρYv and ρl = ρYl ,

which are given as the mass of phase per unit volume occupied by the mixture. Note
that these phasic densities are distinct from those introduced earlier and are related by the
following expressions:

ρv = ρ̃vαv ρl = ρ̃lαl . (8)

Further, the mixture density, ρ = ρv + ρl , and Yv + Yl = 1. It is straightforward to see that
the mass and volume fraction forms are in fact identical.

In the case of gaseous mixtures, it is customary to replace one of the phasic (or species)
continuity equations by an overall continuity equation (obtained by summing up the indi-
vidual continuity equations):

∂ρ

∂τ
+ ∂ρu

∂x
= 0. (9)

However, for multiphase flows, this procedure is prone to error because of difficulties in
accurately computing small changes in the vapor density (ρv) from differences between the
relatively large overall (ρ) and liquid (ρl) densities. It is therefore advisable to solve the
individual phasic continuity equations directly.

Alternately, some researchers prefer to define an overall mixture volume continuity equa-
tion, obtained by dividing the phasic continuity equations by the respective phasic densities



58 VENKATESWARAN ET AL.

and then summing them up:

1

ρ̃v

∂ρ̃vαv

∂τ
+ 1

ρ̃l

∂ρ̃lαl

∂τ
+ 1

ρ̃v

∂ρ̃vαvu

∂x
+ 1

ρ̃l

∂ρ̃lαlu

∂x
= 0. (10)

For purposes of solution, in this paper, we employ the volume fraction system with all the
individual phasic continuity equations. However, the mass fraction and the overall mixture
continuity forms are useful for purposes of analysis, as evident in the following sections.

3. EIGENVALUE ANALYSIS

3.1. Volume Fraction Form

The system given in Eqs. (1)–(3) may be expressed in the vector form

�α

∂ Qα

∂τ
+ ∂ E

∂x
= 0, (11)

where

Qα =

 p

αv

u


 E =




ρ̃vαvu

ρ̃lαlu

ρu2 + p


 �α =




αv
∂ρ̃v

∂p

∣∣
αv

ρ̃v 0

αl
∂ρ̃l

∂p

∣∣
αv

−ρ̃l 0

u ∂ρ

∂p

∣∣
αv

u(ρ̃v − ρ̃l) ρ


. (12)

Note that, for the isothermal system under consideration here, the functions ∂ρ̃v/∂ρ and
∂ρ̃l/∂ρ represent the reciprocal of the squares of the speed of sound in the two individual
phases. Also note that

∂ρ

∂p

∣∣∣∣
αv

= αv

∂ρ̃v

∂p

∣∣∣∣
αv

+ αl
∂ρ̃l

∂p

∣∣∣∣
αv

. (13)

To determine the eigenvalues of the above two-phase system, we define the Jacobian

Aα = ∂ E

∂ Qα

=




uαv
∂ρ̃v

∂p

∣∣
αv

uρ̃v ρ̃vαv

uαl
∂ρ̃l

∂p

∣∣
αv

−uρ̃l ρ̃lαl

1 + u2 ∂ρ

∂p

∣∣
αv

u2(ρ̃v − ρ̃l) ρu


. (14)

The system eigenvalues are then given by the eigenvalues of �−1
α (Aα),

�−1
α Aα =




u 0 ρc2

0 u Z
1
ρ

0 u


 (15)

where

Z = ρc2αlαv

(
1

ρ̃l

∂ρ̃l

∂p

∣∣∣∣
αv

− 1

ρ̃v

∂ρ̃v

∂p

∣∣∣∣
αv

)
, (16)
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and the sound speed is given by the expression

1

c2
= ρ

(
αl

ρ̃l

∂ρ̃l

∂p

∣∣∣∣
αv

+ αv

ρ̃v

∂ρ̃v

∂p

∣∣∣∣
αv

)
, (17)

which is the standard mixture rule for the sound speed of two-phase mixtures.
It can be readily seen that the eigenvalues of the above system are given as

λ
(
�−1

α Aα

) = u, u ± c, (18)

which has the familiar form of the single-phase compressible system.

3.2. Mass Fraction Form

The mass-fraction equation system may be expressed in the vector form

�Y
∂ QY

∂τ
+ ∂ E

∂x
= 0, (19)

where

QY =




p

Yv

u


 E =




ρYvu

ρYlu

ρu2 + p


 �Y =




Yv
∂ρ

∂p

∣∣
Yv

ρ + Yv
∂ρ

∂Yv

∣∣
p 0

Yl
∂ρ

∂p

∣∣
Yv

−ρ + Yl
∂ρ

∂Yv

∣∣
p 0

u ∂ρ

∂p

∣∣
Yv

u ∂ρ

∂Yv

∣∣
p ρ


. (20)

The Jacobian AY is given by

AY = ∂ E

∂ QY
=




uYv
∂ρ

∂p

∣∣
Yv

ρu + uYv
∂ρ

∂Yv

∣∣
p

ρYv

uYl
∂ρ

∂p

∣∣
Yv

−ρu + uYl
∂ρ

∂Yv

∣∣
p ρYl

1 + u2 ∂ρ

∂p

∣∣
Yv

u2 ∂ρ

∂Yv

∣∣
p ρu


. (21)

The system eigenvalues are then given by the eigenvalues of �−1
Y (AY ),

�−1
Y Ay =




u 0 ρc2

0 u 0
1
ρ

0 u


, (22)

and the sound speed is defined by the expression

1

c2
= ∂ρ

∂p

∣∣∣∣
Yv

. (23)

It is evident that the eigenvalues of the above matrix system are

λ
(
�−1

Y AY
) = u, u ± c, (24)
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FIG. 1. Mixture sound speed versus vapor volume fraction for equilibrium saturated steam at 300 K.

which are, of course, the same as those given in Eq. (18) because the matrices are similar.
Further, it can be easily shown that the property Jacobians are given as

∂ρ

∂p

∣∣∣∣
Yv

= ρ

(
αl

ρ̃l

∂ρ̃l

∂p

∣∣∣∣
αv

+ αv

ρ̃v

∂ρ̃v

∂p

∣∣∣∣
αv

)
(25)

∂ρ

∂Yv

∣∣∣∣
p

= ρ2

(
1

ρ̃l
− 1

ρ̃v

)
, (26)

where the properties have been expressed in terms of known properties of the two phases.
Note that the expression for the speed of sound can be verified to be identical to that in
Eq. (17).

From Eq. (17) or (25), it is clear that the speed of sound is significantly attenuated in two-
phase mixture regions as shown in Fig. 1. Multiphase flowfields are therefore characterized
by widely different flow regimes, i.e., incompressible in the pure liquid phase, low-Mach
compressible in the pure vapor phase, and transonic or supersonic in the mixture region.
Consequently, it is necessary for the underlying numerical algorithm to be able to handle
such widely diverse flow regimes. We point out here that our analysis has been restricted to
the inviscid physics of the multiphase system. Viscous and source term effects can indeed
influence the nature of the physics (and the numerics) of model, multiphase flowfields, but
in many instances, these effects are secondary. In the interests of simplicity, we therefore
neglect these effects in our analysis. In the following section, we apply perturbation analysis
to probe the underlying character of the time-dependent multiphase system and to derive
appropriate preconditioning forms.

4. PERTURBATION ANALYSIS

The perturbation procedure closely follows that developed for the single-phase equations
[18]. We consider only the inviscid equations here, although similar developments are
possible for the Navier–Stokes equations as well. We begin with the momentum equation,
which has a common form in all of the systems described in the above sections. Following
that, we consider the various forms of the phasic continuity equations.
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4.1. Overall Momentum Equation

We write the equation in the nonconservative form for simplicity:

ρ
∂u

∂τ
+ ρu

∂u

∂x
+ ∂p

∂x
= 0. (27)

We next nondimensionalize the equations to facilitate order-of-magnitude comparisons
between the terms. We introduce the following reference scales for the variables:

L , ur , τr , pr , ρr , ρvr , ρlr .

Here, L represents a characteristic length scale, ur is the reference velocity, and τr is the
reference timescale (defined below). pr is the reference pressure, while ρr is the reference
mixture density. Further, we note that ρvr and ρlr are the reference phasic densities. The
nondimensionalized version of Eq. (27) is then given by(

L

urτr

)
ρ̄

∂ ū

∂τ̄
+ ρ̄ū

∂ ū

∂ x̄
+
(

pr

ρr u2
r

)
∂ p̄

∂ x̄
= 0, (28)

where the overbars indicate nondimensional quantities.
We note that the coefficient of the pressure gradient term in the above equation becomes

very large in the limit of low-speed flows. To insure that the pressure gradient is always
balanced by the convective terms, we define the small parameter

ε = ρr u2
r

pr
(29)

and consider the limiting form of Eq. (28) as this parameter goes to zero. We then expand
the pressure in a power series,

p̄ = p̄0 + ε p̄1 + · · · , (30)

and substitute it into Eq. (28) to get(
L

urτr

)
ρ̄

∂ ū

∂τ̄
+ ρ̄ū

∂ ū

∂ x̄
+ 1

ε

∂( p̄0 + ε p̄1)

∂ x̄
= 0. (31)

A more complete procedure would use analogous expansions for all the variables, but the
results show that only the zeroth order quantities of the remaining variables appear in the
final equations. Consequently, to minimize the algebra, we perturb only the pressure.

The purpose of the time-derivatives in a time-marching scheme is to drive the equa-
tions to the desired steady state solution. To insure that this process is efficient, we select
the characteristic timescale such that the time-derivatives are of the same magnitude as
the convective terms. Specifically, in Eq. (31), the coefficient of the time-derivative must
be of order unity so that τr = L/ur . This requirement clearly implies that the appropriate
timescale is the convective timescale of the fluid particle. In that case, there remains no term
to balance the 1/ε term in the pressure gradient term, leading us to conclude that

∂ p̄0

∂ x̄
= 0. (32)
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Moreover, for most problems, p̄0 is fixed by the boundary condition, and hence this quantity
is independent of time as well.

The zeroth order momentum equation therefore takes the form

ρ̄
∂ ū

∂τ̄
+ ρ̄ū

∂ ū

∂ x̄
+ ∂ p̄1

∂ x̄
= 0. (33)

Note that the ε term in the pressure gradient has been cancelled by the 1/ε term that multiples
it. All the terms in Eq. (33) are clearly of order unity. In the time-marching framework, it is
evident that this equation provides an adequate means of updating the velocity ū. However,
the presence of the first-order pressure p̄1 implies that we must have a viable way of updating
it from the phasic continuity equations. Accordingly, we consider these equations next.

4.2. Phasic Continuity Equations in Volume Fraction Form

To analyze the scaling of the continuity equations, we first consider the volume fraction
form given in Eq. (11). After nondimensionalization and perturbation expansions, these
equations take the form

(
pr

ρvr

∂ρ̃v

∂p

∣∣∣∣
αv

)
αvε

∂ p̄1

∂τ̄
+ ρ̄v

∂αv

∂τ̄
+ ∂ρ̄v ūαv

∂ x̄
= 0 (34)

(
pr

ρlr

∂ρ̃l

∂p

∣∣∣∣
αv

)
αlε

∂ p̄1

∂τ̄
− ρ̄l

∂αv

∂τ̄
+ ∂ρ̄l ūαl

∂ x̄
= 0. (35)

Note that the phasic volume fractions are already nondimensional terms. Since both equa-
tions have time-derivatives of the volume fraction (αv) that are of order unity, these equations
clearly provide a viable manner of updating this variable. The other volume fraction, (αl),
is readily obtained by the relation αl = 1 − αv . Further, both of the above equations have
time-derivatives of the first-order pressure term present. However, these time-derivatives
become vanishingly small in the limit of ε → 0. Thus, in this limit, there is no means of
reliably updating the first-order pressure. In practice, the problem manifests itself in slow
convergence of the time-marching procedure at low speeds. We further note that the situ-
ation is precisely the same as the singularity encountered by the single-phase equations in
the incompressible limit.

A further consequence of the singularity in the low-speed limit is a possible degradation
in the accuracy of the discrete formulation. This problem has been studied in the context of
single-phase flows and shown to be related to the conditioning of the artificial dissipation
terms [16, 18]. The traditional way of alleviating the efficiency and accuracy problems is
to alter the time-marching system such that it remains well conditioned at all speeds. In the
present context, this may be achieved through the introduction of pseudo-property terms in
the pressure time-derivative terms such that they are of order unity. Thus,

∂ρ̄ ′
v

∂p

∣∣∣∣
αv

= ρvr

pr

1

ε
= ρvr

ρr

1

u2
r

(36)

∂ρ̄ ′
l

∂p

∣∣∣∣
αv

= ρlr

pr

1

ε
= ρlr

ρr

1

u2
r

. (37)
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The above scaling insures that each of the pressure time-derivatives in Eqs. (34) and (35)
are of order unity in the asymptotic limit of ε → 0. The time-dependent system is thereby
rendered suitable for time-marching computations at all flow speeds. This scaling proce-
dure is generally referred to as preconditioning, and in the single-phase case, it precisely
corresponds to the artificial compressibility formulation [15–18].

4.3. Overall Mixture Volume Continuity Equation

Other preconditioning scalings result when different forms of the governing equations
are used. For instance, if the overall mixture volume continuity equation (given in Eq. (10))
is used, we get the following equation after nondimensionalization and perturbation expan-
sions:

[(
pr

ρvr

∂ρ̃v

∂p

∣∣∣∣
αv

)
αv

ρ̄v

+
(

pr

ρlr

∂ρ̃l

∂p

∣∣∣∣
αv

)
αl

ρ̄l

]
ε
∂ p̄1

∂τ̄
+ 1

ρ̄v

∂ρ̄v ūαv

∂ x̄
+ 1

ρ̄l

∂ρ̄l ūαl

∂ x̄
= 0. (38)

Note that the above equation serves as a means for updating only the first-order pressure since
the volume fraction no longer appears in the time-derivative. Thus, one of the individual
phasic continuity equations will serve to update the volume fraction.

For Eq. (38) to be well behaved as ε → 0, we must require that the term in square brackets
be scaled so that it is on the order of 1/ε. One way of doing this is to use the scalings suggested
in Eqs. (36) and (37). However, a different scaling also becomes possible. Consider

∂ρ̃ ′
v

∂p

∣∣∣∣
αv

= 1

M2
r

∂ρ̃v

∂p

∣∣∣∣
αv

(39)

∂ρ̃ ′
l

∂p

∣∣∣∣
αv

= 1

M2
r

∂ρ̃l

∂p

∣∣∣∣
αv

, (40)

where M2
r = u2

r /c2
r . Substituting Eqs. (39) and (40) into Eq. (38), we get

[(
αv

ρ̃v

∂ρ̃v

∂p

∣∣∣∣
αv

)
+
(

αl

ρ̃l

∂ρ̃l

∂p

∣∣∣∣
αv

)]
εpr

M2
r

∂ p̄1

∂τ̄
+ 1

ρ̄v

∂ρ̄v ūαv

∂ x̄
+ 1

ρ̄l

∂ρ̄l ūαl

∂ x̄
= 0. (41)

Using Eq. (17) and noting that εpr/ρr c2
r M2

r = 1, the above equation reduces to

1

ρ̄c̄2

∂ p̄1

∂τ̄
+ 1

ρ̄v

∂ρ̄v ūαv

∂ x̄
+ 1

ρ̄l

∂ρ̄l ūαl

∂ x̄
= 0. (42)

The first-order pressure may thus be reliably obtained from the mixture volume continuity
equation.

4.4. Phasic Continuity Equations in Mass Fraction Form

Yet another scaling suggests itself if we use the mass fraction form of the phasic conti-
nuity equations. After nondimensionalization and perturbation expansions, these equations
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become (
pr

ρr
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(
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Ylε
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∂Yv
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p
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∂Yv

∂τ̄
+ ∂ρ̄ūYl

∂ x̄
= 0. (44)

Again, these equations serve as a means of updating the mass fraction variable and the
first-order pressure. The former is readily done, while the pressure update is singular in the
limit of ε → 0. In order to remedy this, we introduce pseudo-properties, as we did before.
Here, this is readily accomplished by the following scaling:

∂ρ ′

∂p

∣∣∣∣
Y v

= ρr

pr

1

ε
= 1

u2
r

. (45)

It may be readily verified that introducing this pseudo-property in lieu of the physical
derivative ∂ρ/∂p renders the pressure time-derivatives to be of order unity and thereby
amenable to reliable pressure updates.

In the above analyses, we have applied perturbation theory to the continuous (differential)
form of the governing equations and verified the appropriate scaling of time-derivatives for
efficient time-marching procedures. In order to verify that such rescaled equations preserve
the accuracy of the numerical solutions, it is also possible to extend such analyses to the
discrete form of the equations. Reference [18] provides details of the discrete analysis for
the single-phase equations, and the procedure is similar for the multiphase system. For
reasons of brevity, we do not provide the details of the derivation and simply state that
discrete analysis of all the preconditioning systems derived here indeed verifies that these
systems properly preserve numerical accuracy under the limiting conditions of interest.

5. PRECONDITIONING FORMULATION

In the previous section, we used perturbation analysis to analyze the asymptotic behavior
of the governing equations. In particular, we derived various preconditioning or artificial
compressibility formulations that render the system well behaved for time-marching solu-
tions. In this section, we summarize the preconditioning formulations and verify that the
eigenvalues of the preconditioned systems are indeed well behaved and well conditioned.
We emphasize that, although the present analysis is concerned with obtaining steady solu-
tions, the preconditioning formulation may be readily generalized to time-accurate problems
using a dual-time approach. Details of the preconditioned dual-time formulation are given
in Ref. [18].

5.1. Volume Fraction Form

The preconditioned version of the volume fraction form given in Eq. (11) is obtained by
introducing pseudo-properties into the matrix premultiplying the time-derivatives. Thus,
we have

� p
α

∂ Qα

∂τ
+ ∂ E

∂x
= 0, (46)
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with the preconditioning matrix being defined as

� p
α =



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
 . (47)

The pseudo-properties are defined so as to render the eigenvalues well conditioned.
One possible choice suggested by Eqs. (36) and (37) is:
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(48)
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. (49)

The term Vp is some characteristic velocity scale, typically the local convective velocity
under inviscid conditions. The above formulation is, in fact, the same as that used by Kunz
et al. for incompressible two-phase mixtures [11]. An interesting aspect of the above defini-
tion is that it is not possible to automatically switch the preconditioning off for supersonic
flows as is typically done for single-phase flows [16–18]. While this is a disadvantage, the
effect appears to be small in practice for moderate supersonic Mach numbers.

An alternate scaling choice is that corresponding to Eqs. (39) and (40). Accordingly,

∂ρ̃ ′
v
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= 1
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αv

, (50)

where M2 = V 2
p /c2, and Vp is some characteristic velocity scale. The above formulation is,

in fact, identical to that proposed by Ahuja et al. [13] for isothermal multiphase mixtures.
Further, it has the advantage of enabling the preconditioning to be turned off at supersonic
speeds (M ≥ 1), at which limit the equations are naturally well posed and well conditioned.
However, implementation of the method in the incompressible limit is a little clumsy be-
cause the Mach number tends to zero in this limit. In practice, this is not a major issue
since the incompressible sound speed may be set to an arbitrarily large number. In this
work, unless otherwise specified, we employ Eq. (50) to define the pseudo-properties in the
preconditioning matrix.

In order to verify that eigenvalues of the preconditioned system are well behaved, we
examine the system Jacobian,

� p−1
α Aα =


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X u Y
1
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0 u
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where
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(52)
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X = ρu(c′)2 αlαv

ρ̃l ρ̃v

(
∂ρ̃v

∂p

∣∣∣∣
αv

∂ρ̃ ′
l

∂p

∣∣∣∣
αv

− ∂ρ̃l

∂p

∣∣∣∣
αv

∂ρ̃ ′
v

∂p

∣∣∣∣
αv

)
(53)
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The eigenvalues of the preconditioned two-phase system are given as

u,
1

2

[
u

(
1 + (c′)2

c2

)
±
√

u2

(
1 − (c′)2

c2

)2

+ 4(c′)2

]
. (55)

Since (c′)2 = V 2
p , the “acoustic” eigenvalues in the above expression are of the same order

as the particle speed, thereby ensuring well-conditioned eigenvalues at all speeds. We note
that the above expressions for the Jacobian and eigenvalues hold for both the Kunz et al.
[11] scaling in Eq. (48) and the Ahuja et al. [13] scaling in Eq. (50). Finally, we also note
that the above formulation reduces to Chorin’s artificial compressibility for single-phase
incompressible flows [15] and to standard preconditioning for single-phase compressible
flows [16–18].

5.2. Mass Fraction Form

A slightly different formulation results if we start with the mass fraction form of the
governing equations (Eq. (19)). We may now write the preconditioning system as

�
p
Y
∂ QY

∂τ
+ ∂ E

∂x
= 0, (56)

with the preconditioning matrix being defined as
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Using Eq. (45), we may write

∂ρ ′

∂p

∣∣∣∣
Yv

= 1

c′2 = 1

V 2
p

, (58)

and Vp is again some reference velocity scale.
The above formulation is identical to the preconditioning used for reacting gas mixtures

[18] and is also similar to that proposed by Merkle et al. for two-phase flows [10]. It
reduces to Chorin’s artificial compressibility for incompressible single-phase flows and to
the standard preconditioning form for compressible single-phase flows. It can also be readily
shown that the eigenvalues of the above formulation are the same as the eigenvalues of the
preconditioned volume fraction formulation (Eq. (55)).

We further note that the preconditioned system in Eq. (56) may be transformed to the
volume fraction variables through the application of a simple chain rule. However, the



MULTIPHASE FLOWS WITH COMPRESSIBILITY 67

resulting system remains different from the preconditioned volume fraction form given
in Eq. (46). Thus, the two formulations are not identical, but they are closely related and
possess the same eigenvalues. Our experience suggests that both approaches should perform
equally well in practice and that the decision of which one to use may well depend upon
the particular form of the equations and solution variables used in the candiate code. In the
current paper, we have used the volume fraction form (Eq. (46)).

6. COMPUTATIONAL FORMULATION

The preconditioning system for isothermal compressible multiphase flows has been in-
corporated into the UNCLE-M code. This code was originally developed for incompressible
flows at Mississippi State University [19]. Subsequently, it has been extensively revised and
extended to two-phase mixtures by Kunz et al. [11]. The code is structured, multiblock,
implicit, and parallel, with upwind flux-difference splitting for the spatial discretization
with appropriate flux limiters and Gauss–Seidel relaxation for the inversion of the implicit
operator. It must be emphasized that the flux difference formulation is based upon the
preconditioned time-derivatives in order to ensure reliable accuracy under all conditions.
Further details regarding the numerical method are identical to those given in Ref. [11]
with the exception that, to form the numerical fluxes, we have applied the van Albada TVD
limiter.

The time-marching formulation for the multiphase system with compressibility effects
is as follows:

�α
p

∂ Qα

∂τ
+ ∂ Q

∂t
+ ∂ E j

∂x j
= H. (59)

Note that a dual-time formulation has been adopted with the first time-derivative represent-
ing the pseudo-time-derivative (used for purposes of the time-iterative procedure), while
the second time-derivative is the physical time-derivative (required for resolving unsteady
flow phenomena) [18].

The physical time-derivative, flux vectors, and source terms are given as follows:

Q =


 ρ̃vαv

ρ̃lαl

ρui


, E j =




ρ̃vαvu j

ρ̃lαlu j

ρui u j + pδi j − µm,tσi j


, H =



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(0)i


. (60)

Note that the viscous fluxes have been included in the momentum equations, and source
terms describing the transfer of mass between the liquid and vapor states are included in the
phasic continuity equations. Turbulent eddy viscosity is determined using a standard wall-
function-based k − ε model. Further, for flows with a noncondensable gas, an additional
gaseous transport equation is introduced.

The mass transfer terms are described using simple finite-rate relations:

ṁ+ = Cprodρ̃vα
2
l (1 − αl)

t∞
(61)

ṁ− = Cdestρ̃vαlMIN[0, p − pv]
1
2ρ∞U 2∞t∞

. (62)
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Here, thermal effects on the phase change have been neglected. Cprod and Cdest are empirical
constants, and t∞ is a mean flow timescale. For the results presented here, Cprod = 1,
Cdest = 105, and t∞ = 1. We point out that the mass transfer terms are phenomenological
models and the choice of constants is somewhat arbitrary. However, our experience, as well
as that of other researchers, suggests that the results are relatively insensitive to the precise
values used [10–14].

The pseudo-time-derivatives are responsible for driving to convergence the unsteady
equations at each physical time level. Accordingly, the pseudo-time-derivatives are precon-
ditioned for optimal performance as discussed in the previous sections. The multidimen-
sional forms of these terms are
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
, (63)

with the primed property variables being defined as in Eq. (50).
The characteristic velocity parameter in these definitions is generally expressed as some

functional combination of the free-stream and the local convective velocity scales,

V 2
p = Min

(
Max

(
V 2, kV 2

∞
)
, c2
)
, (64)

where V is the local convective velocity and V∞ is the free-stream velocity. This definition
is similar in form to that suggested by Turkel [16]. We note that the factor k is typically
provided as a user-specified parameter and is somewhat dependent upon the frequency of the
unsteady processes being analyzed [18]. More refined definitions of the reference velocity
based upon local unsteady phenomena will be the subject of future study.

Further numerical details on the physical time-stepping, the pseudo-time-stepping, the
spatial discretization, and the implicit solution procedure are given in Ref. [11].

7. RESULTS

The main purpose of this paper is the formulation of a time-marching procedure for
the solution of multiphase homogenous mixture flows including compressibility effects.
Here, we present some demonstrative results for multiphase problems, many of which
involve transonic and supersonic flows. We begin with a simple one-dimensional shock tube
problem, for which an exact analytical solution exists. We then consider natural cavitation
on submerged bodies, a case that we have previously studied using a fully incompressible
multiphase model [11, 12]. Here, we assess the influence of including compressibility
effects on this flowfield. Finally, we consider two applications that involve supersonic
multiphase flows, namely, a supersonic underwater projectile and a supersonic underwater
rocket plume. The results showcase the capabilities of the formulation to handle a rich
variety of multiphase problems involving compressibility effects.

7.1. Shock-Tube Problem

As a first example, we consider the unsteady two-phase shock-tube problem investigated
both experimentally and theoretically by Campbell and Pitscher [5]. The problem can be



MULTIPHASE FLOWS WITH COMPRESSIBILITY 69

−1 0 1 2 3
950

960

970

980

990

1000

x

ρ

Ideal shock
location 

a)

axial position
−1 0 1 2 3

950

960

970

980

990

1000

x

ρ

Ideal shock 
location 

b)

axial position

FIG. 2. Mixture shock-tube computations and comparison with theory of Campbell and Pitscher [5]. Shock
moves from left to right with initial location at 0. Model solution shown at even time intervals beginning after
initial state. Fluid to right of shock is at rest with liquid-to-gas density ratio of 1000, and αl = 0.95. (a) Pressure
ratio 2. (b) Pressure ratio 6.

modeled as a shock wave moving into a stationary and noncondensable, nonvaporizable
gas/liquid mixture. Assuming that the liquid is incompressible and the gas is perfect, an
exact expression may be obtained for the shock speed [5],

u2
1 = p2

p1
c2

1, (65)

where the subscript 1 denotes conditions in front of the shock, the subscript 2 denotes
conditions behind it, and u1 is the shock speed.

Figure 2 shows the results for two different pressure ratios of 2 and 6. The calculations
are carried out using 101 axial grid points and are second-order accurate in time and third-
order accurate in space. The flow is initially at rest with the shock initially at the zero
axial position. In each case, the predicted results after a given period of time are compared
with the theoretical shock location, and very good agreement is obtained. We note here
that the time-accurate results were obtained using dual time-stepping. The characteristic
velocity parameter, Vp, is specified to be the speed of sound, which is representative of
the characteristic timescale associated with the shock motion. The results demonstrate that
the two-phase preconditioning formulation is capable of resolving acoustic/compressibility
effects very well.

7.2. Natural Cavitation on Axisymmetric Bodies

The application of principal interest to us involves the modeling of sheet cavitation
around axisymmetric bodies at high Reynolds numbers. Because of their importance to naval
hydrodynamics applications, numerous experimental and computational studies of cavity
flowfields around bodies of different shapes have been carried out. Rouse and McNown
have documented steady and time-averaged measurements of relevant cavitation parame-
ters for various forebody shapes [20]. May has assembled cavity shape and size parameters
for a wide range of cavitation numbers [21]. Stinebring et al. have documented the un-
steady cycling behavior of several axisymmetric cavitators [22]. Recently, Kunz et al. and
Lindau et al. have modeled sheet cavity flowfields in a variety of configurations using an



70 VENKATESWARAN ET AL.

FIG. 3. Volume fraction contours and streamlines. Snapshots span an approximate modeled cycle. 0-caliber
ogive at ReD = 1.46 × 105 and σ = 0.3. (a) Isothermal compressible form. (b) Incompressible form. Blue is
liquid (αv = 0) and red is vapor (αv = 1). Time is given in model units referred to the initialization of the cycle,
D/U∞ = 0.146 model time units.

incompressible mixture model [11, 12]. They have made extensive comparisons with ex-
perimental data and have determined the strengths and shortcomings of their model. In
this section, we perform similar computations with the current isothermal compressible
model.

Figures 3 and 4 show flowfield snapshots of the unsteady cavitating flow over a 0-caliber
ogive (20,288 grid points in the plane displayed) and a 1/4-caliber ogive (16,705 grid points
in the plane displayed). The calculations are axisymmetric and have been carried out using
three-dimensional grids with a single computational cell in the direction of symmetry. Each
domain is comprised of multiple structured grid blocks. The computations are second-
order accurate in time and space. The Reynolds numbers are approximately 1.4 × 105

and the cavitation number is 0.3. In both sets of figures, corresponding results using the
incompressible mixture model have also been included to facilitate direct comparison.

It is evident that the flowfields are rich in complexity. We first consider the 0-caliber
results in Fig. 3. Both incompressible and compressible results show the cavity forming at
or very near the leading edge of the ogive body. The cavity is observed to be composed
almost entirely of low-density vapor. Further, because of the sharp turning of the incoming
flow, a recirculating bubble is also formed in this cavity region. The incoming liquid then
flows over the bubble and rejoins the surface of the body downstream of the cavity and the
recirculating bubble. The pressure recovery in this downstream region then sets up a liquid
reentrant jet which shoots into the cavity. As we follow the snapshots through a complete
period, we observe that this reentrant jet appears to progress deeper into the cavity until some
form of cavity pinching occurs that causes the jet to retract until the cycle can commence
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FIG. 4. Volume fraction contours and streamlines. Snapshots span an approximate modeled cycle. 0.25-
caliber ogive at ReD = 1.36 × 105 and σ = 0.3. (a) Isothermal compressible form. (b) Incompressible form. Blue
is liquid (αv = 0) and red is vapor (αv = 1). Time is given in model units referred to the initialization of the cycle,
D/U∞ = 0.136 model time units.

again. The unsteady cycle thus seems to be closely coordinated with the reentrant jet and
the cavity pinching process.

Figure 3 shows a marked difference between the compressible and incompressible results
in the extent to which the liquid reentrant jet penetrates the cavity. In the compressible case,
the liquid jet traverses only about one-half of the cavity length before the jet is pinched off
and begins to retract. The incompressible case also shows the reentrant jet getting pinched
off; however, the liquid bubble appears to remain intact within the cavity until it reaches
the leading edge. In fact, at t = 0.5, the reentrant liquid appears to have pushed the cavity
downstream of the leading edge.

This difference between the compressible and incompressible results is also observed in
Fig. 4 for the 1/4-caliber case. In fact, the difference appears even more marked, with the
compressible case showing the liquid reentrant jet barely reaching into one-half the length
of the cavity, while in the incompressible result, it again appears to traverse most of the
cavity length.

These trends in the behavior of the reentrant jet appear to control the unsteady dynamics of
the flowfields. Figures 5 and 6 show the instantaneous (pressure) drag coefficient histories
for the two cases. The drag coefficient is essentially a measure of the total pressure on
the face of the ogive body. The fluctuations in this quantity then result from the upstream
propagation of pressure disturbances generated by the cavity pulsations.

Examination of the 0-caliber drag coefficient histories in Fig. 5 reveals that the incom-
pressible amplitudes are significantly higher, a fact that is reflected by the more extreme
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FIG. 5. Drag coefficient histories for 0-caliber ogive shape modeled with isothermal compressible and in-
compressible forms. Time is given in model units referred to the initialization of the cycle, D/U∞ = 0.146 model
time units.

cavity distortions that are evident in the incompressible snapshots in Fig. 3. Further, the
dominant mode of the compressible result shows a slightly higher frequency than the in-
compressible result. Again, this result appears to correlate with the distance traversed by
the reentrant jet in Fig. 3, with the shorter reentrant jet penetration yielding the higher
frequency.

Drag coefficient results for the 1/4-caliber ogive are given in Fig. 6. Here, both incom-
pressible and compressible amplitudes are observed to be small, in accordance with the
more streamlined cavity shapes evident in the snapshots in Fig. 4. However, there is now a
more significant difference in the cycling frequency, with the compressible case showing a
much higher frequency. Again, this result correlates well with the jet penetration distance
in Fig. 4. The incompressible case shows the reentrant jet reaching much deeper into the
cavity and, hence, has a smaller cycling frequency.

The frequency data for the above cases are compared with measurement data obtained
by Stinebring et al. [22] in Fig. 7. While all the computed data lie within the bounds of the
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FIG. 6. Drag coefficient histories for 1/4-caliber ogive shapes modeled with incompressible and isothermal
compressible forms. Time is given in model units referred to the initialization of the cycle, D/U∞ = 0.146 model
time units.
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FIG. 7. Strouhal frequency ( f D)/(U∞) comparison modeling results and data from Stinebring et al. [22].

experimental data, it is interesting that the experimental data for the hemispherical forebody
indicate a higher Strouhal frequency than the corresponding result for the 0-caliber ogive.
We point out that this trend is in agreement with the higher frequency obtained for the
1/4-caliber ogive using the compressible model. On the other hand, the incompressible
model predicts roughly the same Strouhal frequency for the two shapes.

The above comparison suggests that the compressible model may be capturing the dy-
namics of the cavity more correctly than the incompressible model. In particular, it appears
that the penetration of the liquid jet (in Fig. 4) may be overpredicted by the incompressible
model. It is not immediately apparent why this may be the case. We speculate that the com-
pressible nature of the vapor phase may be causing the pressure within the cavity to increase
somewhat during the jetting process, thereby weakening the penetration of the jet. In the
incompressible case, on the other hand, the vapor phase is treated as an incompressible fluid,
which may readily accommodate the incoming jet by expanding the size of the cavity as a
whole. Of course, these observations are preliminary in nature and detailed computations
over a range of cavitation numbers are necessary to reach definitive conclusions.

Extensive time-averaged data are also available to characterize various cavity parame-
ters. Figure 8 shows a comparison of arithmetically averaged data for the 0-caliber and

FIG. 8. Comparison of time-averaged results with data of Rouse and McNown [20]. (a) 0-caliber. (b) 1/4-
caliber.
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FIG. 9. Photograph [23] and isothermal compressible model result of supersonic underwater projectile. Model
result contains flowfield density contours indicating bowshock and vaporous wake.

1/4-caliber ogive cases with average surface pressure measurements from Rouse and Mc-
Nown [20]. The incompressible results are also included for comparison. In all cases, the
computed data generally agree with the experiments. Although there are some differences
between the compressible and incompressible results, both sets appear to compare well with
the data.

7.3. Other Applications

In this section, we briefly consider two other applications of interest that involve the
modeling of two-phase compressibility effects. Figure 9 shows an underwater supersonic
projectile. Both computational results and a corresponding photograph [23] of an actual test
are included in the figure. The three-dimensional, but axisymmetric, computational grid is
comprised of 48,049 (in the plane displayed) grid points, and second-order spatial accuracy
is used. The flow Mach number for the case shown is 1.03 and the liquid-to-gas density ratio

FIG. 10. Cartoon vehicle and three-stream, axisymmetric aft flow region. Supersonic gas center jet
(diameter = 1), surrounded by subsonic gas (at free-stream velocity with outer diameter = 2), surrounded by
subsonic liquid. Liquid-to-gas density ratio 1000.
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is nominally 1000. The experiments and the computations show the presence of a bowshock
upstream of the nose. In addition, because of the high velocity, the cavitation number is
about 10−4. Consequently, with the exception of the nose, which is in compression, the
flow immediately adjacent to the body is completely vaporized, as is the downstream wake
portion.

The second example, shown in Fig. 10, is the plume flowfield of an underwater rocket
exhaust. The plume exhaust is supersonic and is slightly underexpanded. It is surrounded by
a coflowing secondary subsonic gas stream, which in turn is surrounded by a liquid water
freestream flow. The nominal liquid-to-gas density ratio is 1000. The two-dimensional
computational grid is comprised of 33,153 grid points and second-order spatial accuracy is
used. Figure 10 shows the shock function field, which exhibits the classic expansion pattern.
In particular, the interaction of the compressible gas stream with the incompressible liquid is
demonstrated first by the contraction and then by the expansion of the gas stream. In addition,
the interface between the liquid and gas phases is comprised of a two-phase mixture, which
is also fully supersonic due to the low magnitude of the mixture sound speed.

Both of the above examples involve supersonic Mach numbers in the bulk flow for at
least one of the phases. The current isothermal assumption may be inadequate to fully rep-
resent the dynamics of these flowfields. Nevertheless, these preliminary results demonstrate
the ability of the algorithm to handle compressibility effects. Detailed modeling of such
flowfields using a fully compressible two-phase formulation (including the energy equation)
will be the subject of future research.

8. SUMMARY

Multiphase mixture flows present a unique challenge to CFD algorithms because of the
simultaneous presence of incompressible flow in the liquid phase, low-speed compressible
flow in the vapor phase, and transonic and supersonic flows in the two-phase mixture region.
Moreover, in certain applications, the bulk liquid flow may also be transonic or supersonic.
Thus, multiphase CFD algorithms have to be efficient and accurate over a wide range of
Mach number regimes and have to be capable of capturing compressible phenomena.

We have developed a preconditioned time-marching algorithm for the computation of
multiphase mixture flows. The derivation is based upon carrying out perturbation expansions
of the underlying time-dependent system and examining the forms of the equations in
the asymptotic limit. The preconditioning formulation introduces pseudo-time-derivatives,
which automatically adapt to keep the system well conditioned in the incompressible as well
as the compressible regimes, and thereby ensures that proper accuracy and optimal efficiency
are maintained at all flow conditions. Three closely related but distinct preconditioning
formulations have been derived for the isothermal compressible multiphase system. The
differences arise from the precise form of the governing equations, volume or mass fraction,
used in the derivation. However, we have shown that all three systems possess identical
eigenvalues and should, therefore, perform comparably in practice.

The volume fraction form of the preconditioning algorithm has been incorporated into an
existing multiphase code (UNCLE-M) and applied to simple as well as practical application
problems. Our principal interest is the modeling of sheet- and supercavitating flowfields in
hydrodynamics applications. Computational results were obtained for flow over 0-caliber
and 1/4-caliber ogives and compared with experimental data as well as with previously
obtained incompressible results. The computed compressible and incompressible results
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agree well with each other and with the experiments for time-averaged data. The unsteady
results, however, show some marked differences between the compressible and incompress-
ible cases. The flowfields are characterized by unsteady effects caused by cavity reentrant
liquid jets and cavity pinching. In the compressible case, the cavity reentrant jets appear
to be relatively short-lived compared with the incompressible case. In the latter case, the
reentrant jet persists almost until it reaches the leading edge of the cavity. In turn, these
effects lead to higher frequencies for the compressible model, which is in agreement with
measured Strouhal frequency data. Thus, it appears that compressibility effects may need
to be considered to correctly describe the cavity dynamics. Additional investigations over
a wider range of cavitation numbers are necessary to confirm these findings.

Preliminary computations have also been performed for underwater supersonic projectile
and underwater rocket plume flowfields. Results with the present isothermal compressible
formulation appear to be qualitatively correct. However, because the bulk flow of one of
the phases is supersonic, a fully compressible formulation (including the energy equation)
may be necessary to accurately model the flowfields. The development of algorithms for the
fully compressible multiphase system is currently underway. In addition, future work will
include detailed assessments of viscous, unsteady, and source term effects on the behavior
of multiphase algorithms.
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